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Crystalline silicon is an ideal compound to test the current state of experimental

structure factors and corresponding electron densities. High-quality structure

factors have been measured on crystalline silicon with synchrotron powder

X-ray diffraction. They are in excellent agreement with benchmark Pendellö-

sung data having comparable accuracy and precision, but acquired in far less

time and to a much higher resolution (sin �/� < 1.7 Å�1). The extended data

range permits an experimental modelling of not only the valence electron

density but also the core deformation in silicon, establishing an increase of the

core density upon bond formation in crystalline silicon. Furthermore, a

physically sound procedure for evaluating the standard deviation of powder-

derived structure factors has been applied. Sampling statistics inherently

account for contributions from photon counts as well as the limited number of

diffracting particles, where especially the latter are particularly difficult to

handle.

1. Introduction

Synchrotron powder X-ray diffraction (SPXRD) has in recent

years evolved into an attractive technique for probing the

electron density (ED) of extended inorganic materials

(Jørgensen et al., 2014). At the cost of collapsing the three-

dimensional reciprocal space into one, SPXRD largely

resolves the intrinsic challenges tied to this class of materials

by delivering data with negligible extinction and reduced

absorption. The present study exploits such qualities to

determine benchmark structure factors on crystalline silicon

(cSi), which for the low-temperature case extend to an

exceptionally high resolution. With its monatomic structure,

low atomic number and well studied electronic properties, cSi

presents a point of reference for evaluating novel and existing

ab initio methods (Pisani et al., 1992; Zuo et al., 1997; Lu &

Zunger, 1992). Thus, it is of general interest to determine the

experimental data of cSi at the best possible level.

In X-ray diffraction structure factors are determined, which

are defined as the Fourier coefficients of the ED,

FH ¼
R
� rð Þ � T exp 2�iH � rð Þ dr; ð1Þ

where H ¼ ha� þ kb� þ lc� is the reciprocal-lattice vector, T is

a probability function that accounts for thermal motion, and

�ðrÞ is the ED at the point r. Within the kinematic framework,

the incoming photons are assumed to scatter only once and a

simple relationship connects the structure factors to the

measured intensities, Ihkl / jFhklj
2 (Giacovazzo, 2002). To

avoid multiple scattering events and insufficient correction

models (Yamamoto et al., 1996), accurate structure factors of

cSi have in the past been measured by the dynamical

Pendellösung method (Kato, 1988). In fact, its disposition
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towards perfect crystallinity has made cSi one of the main

compounds for this ambitious and extremely time-demanding

technique (Teworte & Bonse, 1984; Saka & Kato, 1986; Aldred

& Hart, 1973). Among the reported data, the averaged

structure factors corrected for anomalous dispersion are

regarded as superior and are herein referred to as FPEND

(Deutsch & Hart, 1988; Cummings & Hart, 1988).

Re-entering the kinematic regime, Nishibori et al. convin-

cingly demonstrated that an accuracy comparable to that of

the Pendellösung technique is achievable by state-of-the-art

SPXRD (Nishibori et al., 2007). In the current study we

improve the SPXRD experiment by conducting it in vacuum

and with shorter X-ray wavelength, thereby improving the

resolution and signal-to-background. In addition to a good

determination of the high-intensity reflections, the high-order

low-intensity reflections are measured more accurately, since

these in particular are affected by the noise from air scattering.

An observation is meaningless if no uncertainty is assigned.

This bold statement clearly stresses the importance of

knowing not only the magnitude of a structure factor, jFj, but

also its uncertainty, �F . Crystallographic structure factors are

used to refine a model by least-squares refinement, where �F

defines the weights (Giacovazzo, 2002). Thus, wrong estimates

of the uncertainty may at best result in wrong estimates of the

model parameter uncertainties, and at worst in an incorrect

model. When determined by SPXRD, the �F ’s are propagated

from the uncertainties of the pattern intensities. Consequently,

it is of great importance to determine the pattern uncertainties

correctly. Traditionally, only Poisson statistics have been

applied which effectively ignore the contribution from the

limited number of diffracting particles in the sample (Ida,

2011; Ida & Izumi, 2011; Alexander et al., 1948; De Wolff,

1959).

This paper demonstrates how excellent SPXRD of high

resolution with a good uncertainty estimate can be used in

advanced modelling of the ED. Indeed, prior studies on

diamond and cubic boron nitride have demonstrated that the

core region ED can be determined from SPXRD data

(Bindzus et al., 2014; Wahlberg et al., 2015). Being isostructural

with diamond, silicon represents a case where the core ED

composes the largest contribution to the structure factors even

at low order (four valence electrons as opposed to ten core

electrons). As shown below, the scattering magnitude and high

data resolution even allow us to subdivide the core ED into

two separate ED functions, largely representing the K and L

shells, producing a model of unseen quality and complexity.

2. Experimental details

2.1. Synchrotron powder X-ray diffraction data

Diffraction data at 100 K and 298 K were collected at the

PETRA III beamline P02.1 using high-energy X-rays (60 keV,

� = 0.2072 Å). The silicon sample (NIST 640d, median particle

diameter 4.1 mm) packed in a 0.2 mm glass capillary was

continuously rotated during data collection to improve the

particle statistics. To ensure a better determination of the high-

order reflections, the diffraction experiment was conducted in

vacuum, thereby minimizing background scattering from air

(Straasø et al., 2013). Data were obtained at room temperature

(RT) and at 100 K by cooling the sample with a jet of helium at

liquid-nitrogen temperature (Dippel et al., 2014). Fractions of

the Debye–Scherrer cones were collected on image plates,

which after digitalization (GE Typhoon FLA 700 scanner)

were integrated to a one-dimensional diffraction pattern

(Fig. 1).

2.2. Computational details

The theoretical electronic structure was determined in the

experimental geometry employing density functional theory

(DFT) methods incorporated in the WIEN2k software

package (Blaha et al., 2008). Calculations were performed
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Figure 1
(a) Observed and calculated diffraction pattern at 298 K. (b) Wilson plot of the observed structure factors of the third iteration against the calculated
static structure factors.



using the PBE functional (Perdew et al., 1996) on a 46 � 46 �

46 k-grid with RKmax = 10. The ED within the atomic spheres

was expanded to include spherical harmonics up to L = 10.

Static structure factors were obtained by Fourier transforma-

tion of the theoretical ED.

3. Electron-density models

The simplest ED model is the conventional independent-atom

model (IAM), where the total ED is assumed to be a super-

position of isolated ground-state atoms. An atom-centred

multipole model has the flexibility to describe atomic inter-

actions such as covalent bonding and charge transfer (Stewart,

1976). In the standard Hansen–Coppens multipole formalism

(HC), the total ED is constructed from a superposition of

pseudo-atoms, each containing an inert core in addition to an

adjustable spherical and aspherical valence density (Hansen &

Coppens, 1978):

�at rð Þ ¼ Pc�c rð Þ þ Pv�
3�v �rð Þ

þ
Plmax

l¼0

�03Rl �
0rð Þ
Pl

m¼0

Plm�dlm� �; ’ð Þ; ð2Þ

where Pc and Pv denote the electronic population of the

spherical components, whereas the aspherical part is modelled

by real spherical harmonics, dlm�, with individual population

parameters, Plm�. Radial expansion and contraction of the

atomic ED are regulated by � and �0. The tetrahedral site

symmetry of the silicon atom restricts all other populations

than P32�, P40 and P44þ to zero when expanding to fourth

order, where the allowed hexadecapoles are linearly depen-

dent.

The extended Hansen–Coppens model (EHC) abandons

the basic assumption of an inert core by parameterizing the

inner shells of the atom (Fischer et al., 2011). The HC model is

expanded by adding functions similar to the spherical and

aspherical density functions of the valence ED to the inner

ED:

�at rð Þ ¼
PN
n¼1

�
Pn�

3
n�n �nrð Þ

þ
Plmax

l¼0

�03n Rl;n �
0
nrð Þ

Pl

m¼0

Pnlm�dlm� �; ’ð Þ

�
; ð3Þ

where N is the number of shells in the atom ‘at’. In the current

analysis of silicon, it was sufficient to allow for spherical

deformation of the inner shells, thereby introducing four extra

parameters (we add a K and L shell: PK, PL, �K and �L).

3.1. Thermal deconvolution

A fundamental step in ED studies is the deconvolution of

thermal motion. For monatomic compounds, a Wilson plot is a

reliable method for estimating the isotropic atomic displace-

ment parameter (ADP) (Wilson, 1942):

ln
F2

obs

F2
sta

� �
¼ ln kð Þ � 16�2Uiso

sin2 �

�2
: ð4Þ

The cubic site symmetry of Si restricts the atomic displace-

ment to spherical within the harmonic approximation, and a

complete set of static structure factors, Fsta, is calculated by

DFT. The slope of equation (4) is proportional to the isotropic

ADP, Uiso, while the vertical intersection represents the scale

factor (k) of the experimental data.

4. Structure-factor extraction

Since a powder diffraction experiment measures a one-

dimensional projection of the complete scattering pattern, the

recovery of the structure factors, Fobs, constitutes a key chal-

lenge. The cubic symmetry and short unit-cell length of cSi

[Fd3m, a = 5.43123 (8) Å], however, minimize model effects by

a recognizable background profile and eliminating virtually all

peak overlap at low order.

4.1. Estimation of uncertainty

An important and often neglected aspect in the analysis of

powder patterns is the procedure for estimating standard

deviations of the structure factors, �F . Contrary to the

empirical schemes implemented in common refinement

programs (Bindzus & Iversen, 2012), we propose a simple and

physically founded procedure that exploits the available

information in an area detector. Since the exposed part of the

applied image-plate detector is 400 pixels wide, it provides the

equivalent number of independent measurements for every

point in the diffractogram. Alternatively to estimating the

uncertainties in the diffraction pattern from Poisson statistics,

possibly even combined with more advanced particle statistics

(Ida, 2011; Ida & Izumi, 2011), we suggest simple sample

statistics. We assume that every point along the integration arc

is an independent observation and from this data set deter-

mine the standard deviation:

� ¼

Pn
x¼1 Ix � hI2�i
� �2

ðn� 1Þ

" #1=2

; ð5Þ

where Ix is the intensity at the point x on the integration path

and hI2�i is the average intensity. The standard deviation of the

mean thereby becomes

� hI2�i
� �

¼
�

n1=2
: ð6Þ

However, since we use the sum and not the mean of the

intensity, the uncertainty is rescaled according to propagation

of uncertainties:

� y2�

� �
¼ � hI2�i

� �
� n; ð7Þ

since

y2� ¼
Pn
x¼1

I2�;x ¼ hI2�i � n: ð8Þ

The uncertainties of the pattern points are converted by error

propagation as given in the supporting information. Notably,

this simple procedure includes all sources of error, abandoning

a simplistic belief in counting statistics as the sole contributor.
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4.2. Pattern fitting

The patterns are fitted with the model-dependent Rietveld

refinement method in Jana2006 (Rietveld, 1969; Petřı́ček et al.,

2006). In cSi only complete peak overlap occurs caused by two

more reflections with reciprocal-lattice vectors of equal

lengths (first incidence at sin �=� = 0.66 Å�1). In the case of

overlap the contribution of each reflection to the measured

peak is determined from the ratio between the corresponding

model reflections. Thus, the model used in the extraction may

affect the magnitude of the extracted structure factors.

In the direct pattern fitting the HC model was used to

represent the ED, and the thermal motion was deconvoluted

by a Wilson plot. However, the model dependency of the

Rietveld method requires an iterative procedure: the Uiso

determined from the extracted structure factors is used in a

subsequent Rietveld refinement. This is repeated until the

ADPs are identical within the estimated error (Table 1,

Fig. 1b).

The peak shape was satisfactorily reproduced by two

Lorentzian functions (LY and LX) and a Gaussian function

(GW). Though the two-dimensional data were integrated

along an arc, asymmetry was still present in the peaks. This

was readily accounted for by Simpson’s asymmetry correction

(asym). The background was determined by linear interpola-

tion between 60 points. The cell edge length was not refined at

room temperature (NIST standard), instead a shift parameter

was included. All parameters are listed in Table 1.

4.3. Structure-factor quality

Comparison with FPEND demonstrates that state-of-the-art

SPXRD measures structure factors with comparable accuracy

(Fig. 2a). Agreement factors, R ¼
P
jjFobsj � jFPENDjj=P

jFobsj, of 0.57% at 100 K and 0.25% at RT verify the good

agreement between the different measurements. The better

correspondence with the RT data reflects a similar acquisition

temperature compared with the Pendellösung data, as

anharmonicity and second-order effects like thermal diffuse

scattering (TDS) persist in the experimental structure factors

deconvoluted with an isotropic ADP.

The relative uncertainty of the 100 K structure factors is

shown in Fig. 2(b) and compared to the corresponding case of

pure Poisson statistics, where the error of the powder pattern

is assumed to be �y ¼ y1=2. Deviations are restricted to the

low-order region and represent dominant contributions from

particle statistics (Alexander et al., 1948; De Wolff, 1959). This

observation agrees with diamond data collected under similar

conditions as the error from a limited number of particles was

demonstrated to dominate at sin �=� < 1 Å�1 (Straasø et al.,

2014). Without resorting to comprehensive and approximate

models (Ida, 2011), the proposed procedure by its very defi-

nition includes such complex effects.

Moreover, the similarity to the significance of FPEND

establishes that also the precision of SPXRD parallels the

Pendellösung technique (Fig. 2b). Such a performance is even

more remarkable when it is taken into account that the data

extend to a far higher resolution and were acquired in merely

50 min. This underlines that SPXRD indeed has reached a

stage where for extended inorganic materials it can compete

with and even surpass techniques based on single crystals.

Though weak, the symmetry-forbidden 222 reflection has

been detected for cSi in several cases (Nishibori et al., 2007;

Fujimoto, 1974; Roberto et al., 1974; Roberto & Batterman,

1970; Alkire et al., 1982). Its occurrence is due to the presence

of an acentric component in the structure factor, which

primarily arises from the covalent bonding (Roberto &

Batterman, 1970; Roberto et al., 1974; Keating et al., 1971;

Dawson, 1967). In contrast, higher-order reflections of the

hþ kþ l ¼ 4nþ 2 group exhibit significant anharmonic

features. These are presently too weak to be observed,

prohibiting an unambiguous modelling of anharmonic ADPs

and the corresponding structure-factor correction (Trucano &
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Table 1
Rietveld refinement results.

Fixed parameters are listed without uncertainties. ‘Free’ is the initial refinement where the ADP is freely refined, w1 and w2 are the first and second iterations
where the ADPs are determined from the Wilson plot. GOF is goodness of fit.

Free (100 K) w1 (100 K) w2 (100 K) Free (298 K) w1 (298 K) w2 (298 K)

R/wR 1.93/0.73 1.74/0.70 1.72/0.70 1.30/0.59 1.28/0.58 1.29/0.59
Rp/wRp 1.08/1.13 1.08/1.13 1.08/1.13 1.12/0.90 1.12/0.90 1.12/0.90
GOF 3.69 3.69 3.69 2.62 2.62 2.62
Scale 0.9007 (5) 0.9020 (4) 0.9022 (4) 0.9644 (7) 0.9660 (4) 0.9662 (4)
Shift (10�2�) 0.074 (3) 0.074 (3) 0.074 (3)
Asym �0.021 (1) �0.020 (1) �0.020 (1) �0.032 (1) �0.032 (1) �0.032 (1)
a (Å) 5.430657 (9) 5.430657 (9) 5.430657 (9) 5.431230 5.431230 5.431230
GW 2.233 (7) 2.237 (7) 2.238 (7) 2.329 (7) 2.333 (6) 2.333 (6)
LX 0.799 (6) 0.803 (5) 0.804 (6) 0.694 (5) 0.695 (5) 0.696 (5)
LY 3.95 (7) 3.85 (7) 3.84 (7) 2.43 (6) 2.37 (6) 2.37 (6)
Uiso � 10�4 (Å2) 31.1 (2) 31.72 31.81 55.5 (2) 56.12 56.20
K 0.98 (1) 0.98 (1) 0.98 (1) 0.97 (1) 0.98 (1) 0.98 (1)
�0 1.29 (4) 1.32 (4) 1.33 (4) 1.16 (4) 1.20 (4) 1.21 (4)
P32� 0.36 (3) 0.35 (3) 0.35 (3) 0.37 (3) 0.36 (3) 0.36 (3)
P40 �0.16 (4) �0.15 (3) �0.15 (3) �0.26 (7) �0.22 (5) �0.2 1(5)
Wilson plot
Uiso/scale 31.72 (18)/

0.9974 (16)
31.81 (18)/

0.9943 (15)
31.83 (18)/

0.9936 (15)
56.12 (42)/

1.0007 (16)
56.20 (43)/

1.0026 (16)
56.20 (43)/

1.0026 (16)



Batterman, 1972). The anharmonic contribution to the

thermal displacement can be modelled by refining population

parameters of the probability density functions in the Gram–

Charlier expansion (Johnson & Levy, 1974). However, refining

the symmetry-allowed third-order population improves

neither the pattern fit nor the Bragg residuals regardless of

temperature (see Table S1). On a statistical basis the data are

therefore unsupportive of the existence of a significant

anharmonic contribution to the ADPs. On the other hand, the

resulting probability density functions are in close agreement

with expectations of an increased probability in the opposite

direction of the covalent bond (see Fig. S2). The electron-

density model is not significantly changed upon inclusion of

anharmonic parameters and in light of the ambiguity in the

ADP modelling we proceed with the harmonic ADPs. At

100 K this is a reasonable approximation, while small errors

inevitably are introduced at RT (Spackman, 1986; Lu et al.,

1993; Flensburg & Stewart, 1999). The analysis of our SPXRD

data determines F222 to be 1.73 (5) and 1.67 (5) at 298 and

100 K, respectively. When determined by kinematic �-ray

diffraction at RT and neglecting multiple scattering effects,

F222 = 1.456 (8) (Alkire et al., 1982). Other measurements are

predominantly in closer agreement with the �-ray diffraction

result (Price et al., 1978). Thus, the F222 determined here are

probably exaggerated by 0.1–0.2, but within what is acceptable

for a kinematic X-ray experiment. Moreover, its extraction

process is prone to errors as its low intensity renders it

sensitive to the background modelling. Other sources of error

might be uncorrected phenomena such as the Umweg-

anregung effects (Alkire et al., 1982; Nishibori et al., 2007;

Fujimoto, 1974).

5. Electron-density models

To enhance the ED sensitivity of the data, the extracted

structure factors are subjected to extensive post-Rietveld

modelling, HC(F) and EHC(F). In addition to enhancing the

structural sensitivity, this approach reduces correlation as the

comprehensive modelling of the diffraction pattern is elimi-

nated. Fig. 4 displays the resulting residual densities in the

crystal plane of the Si—Si bond chain for the HC model fitted

aginst pattern [HC(P)] and the post-Rietveld models where

the data are cut off at sin �=� = 1 Å�1 (the full resolution

residual maps are shown in Figs. S3 and S4).

In the standard multipole refinements, HC(P) and HC(F),

notable features persist in the residual density (Figs. 4a, 4b, 4d

and 4e). The covalent Si—Si bonding is satisfactorily

described, whereas the discrepancies in the innermost region

of the Si atoms imply a significant perturbation of the core

density, in particular for the 100 K data. It has been a recurring

topic of discussion whether such subtle deformations are truly

measurable; nevertheless, a recent benchmark study on

diamond clarified that it is experimentally feasible (Bentley &

Stewart, 1974; Batke & Eickerling, 2013; Fischer et al., 2011;

Bindzus et al., 2014). In preceding investigations of cSi, the L

shell was found to expand (Spackman, 1986; Deutsch, 1992; Lu

et al., 1993). Besides a change in the static ED, an independent
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The shell contribution to the atomic Si form factor.

Figure 2
(a) Comparison of the ADP-corrected extracted and Pendellösung
structure factors, corrected for nuclei scattering. (b) The significance of
the three different data sets on cSi.



ADP for the inner shell was justified by two distinguishable

slopes in the Wilson plot (Deutsch & Hart, 1988; Deutsch,

1992). In the current case, however, no clear evidence exists

for such a second ADP (Fig. 1b). The 298 K deviations from a

straight line in the high-order regime are a consequence of the

higher uncertainty in the intensity determination of these

reflections. To avoid a high contribution of noise in the model,

we cut the 298 K data at 1.3 Å�1 (sin2�=�2 = 1.69 Å�1).

In the present analysis, the lower resolution at RT only

allows for the modelling of the L shell, while both of the inner

shells are probed at 100 K, see Fig. 3. Although the enforced

partitioning of the electron density is inspired by Bohr’s

atomic model, it must be stressed that they are not equivalent;

elastic scattering only probes the total density. Moreover,

contrary to results from quantum chemistry, the valence ED is

represented by nodeless radial functions in the multipole

formalism, Rlð�
0rÞ in equation (2).

The EHC model consistently results in near-perfect core fits

(Figs. 4c, 4f and Table 2). At first glance, the 100 K and RT

model seem to disagree on the character of the core ED

deformation as PL and �L show opposite trends (Table 2). The

combined effect of these parameters, however, in both cases

tells the story of a decrease in ED in the volume dominated by

the L shell. At 100 K it was possible to refine the innermost

ED parameters, which support the depletion of the core ED

by a radial expansion, �K = 0.9482 (8). This is in contrast to the

strong positive ED feature in the residual map of the HC(F)

model at 100 K. This distinct feature is modelled by an

increase and contraction of the valence ED function which has

finally a contribution in the core region. In addition to

improved agreement with the observed structure factors, the

EHC model is supported by theory. The values and overall

behaviour of the refined core parameter values compare well

with what Fischer et al. found when refining against theoretical

structure factors (Table 2) (Fischer et al., 2011). At both

temperatures, the aspherical valence ED is more contracted

compared to theory. The spherical valence ED expands at RT

in agreement with the theoretical model and in contrast to the

minor contraction observed for the 100 K model. We believe

this difference arises from the change in unit-cell sizes: RT and
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Figure 4
Residual density maps in the (110) crystal plane based on all reflections below sin �=� = 1 Å�1. (a)–(c) 100 K and (d)–(f) 298 K. Three multipolar
refinements of increasing quality: (a), (d) HC(P); (b), (e) HC(F) and (c), (d) EHC(F). Positive (solid red), negative (dotted blue) and zero density
(dashed black). Contour levels drawn at 0.05 e Å�3. For all maps, the error is determined by Fourier transform to be 0.02 e Å�3.



theory have the same unit-cell length, whereas the 100 K is

contracted.

Combining the contributions from all the ‘shells’, the 100 K

model reveals an increase while the RT model suggests a

decrease in the core ED. The L-shell expansion proposed by

Spackman was based on the Pendellösung data collected at

RT, implying that this ED feature is caused by systematic

errors such as limited resolution and uncorrected TDS. The

increase of the core ED of the 100 K model is in agreement

with the related diamond system (Bindzus et al., 2014). The

increase of the core ED may be seen as a consequence of

covalent bonding: the valence density is relocated into cova-

lent bonds, reducing the electronic shielding of the nuclei for

the inner electrons.

The impact of the various multipole models is gauged from

the local properties of the Si—Si bond, Fig. 5 (Gatti, 2005). It

is apparent that the choice of model only to a minor degree

influences the total ED at the bond critical point, merely

varying between 0.59 and 0.62 e Å�3 in excellent accord with

reported values of 0.58 to 0.69 e Å�3 (Spackman, 1986;

Scheringer, 1980; Yang & Coppens, 1974; Abramov &

Okamura, 1997). The significant spread in the Laplacian,

however, establishes a clear correlation between model

quality and the derivatives of the ED. In consequence, it may

be essential to account for core deformation in the evaluation

of properties such as the source function, inner moments and

interaction energies (Bader & Gatti, 1998; Coppens, 1997).

Due to the high correlation between model parameters, this

conclusion might extend to evaluations that directly incorpo-

rate the multipole parameters.

6. Conclusion

In the current study, we have demonstrated that high-quality

structure factors comparable in both precision and accuracy to

Pendellösung data can be obtained by SPXRD for simple

high-symmetry compounds. By determining the uncertainty in

the diffraction pattern from the variance in the integration

process a physically meaningful result is obtained. The

uncertainty of the low-order reflection determined by variance

is higher than when determined by Poisson statistics, and

thereby accounts for the contribution from the limited number

of diffraction particles.

The high resolution and well estimated uncertainties permit

a detailed modelling of the ED. The higher intensity at high

order and low contribution of unmodelled physical

phenomena such as TDS and anharmonicity at 100 K allow an

explicit fitting of the inner atom ED. The core ED increases

compared to the IAM and HC models, which may result from

decreased shielding when the valence density is redistributed

into covalent bonds. The effect of an explicit core modelling

on the local properties of the Si—Si bond is minor; however,

the Laplacian is somewhat affected. A complete modelling of

the ED may therefore become important when deriving

properties based on high-order derivatives.
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